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Abstract 
In this paper we provide an independent modeling and dynamic analysis of the MARSIS An- 

tenna segmented booms deployed on the Mars Express Spacecraft. The Mars Express Mission is 
a joint NASA/ESA Cooperative project. The Mars Express Spacecraft being built by ESA will 
be launched in June 2003 and arrive at Mars in December 2003 to begin a four year study of the 
planet’s atmosphere, surface, and subsurface. The Mars Advanced Radar for Subsurface and 
Ionospheric Mapping (MARSIS), provided by NASA and managed by JPL, is a key instrument 
in the search for water on Mars. Our objective was to determine the antenna’s dynamic inter- 
action with the spacecraft bus (or central rigid body). Static and modal analyses make use of 
boom material parameters, mass properties, and laboratory test results provided by TRW Astro 
Aerospace, Goleta,CA, in addition to data on spacecraft mass properties and orbital parameters 
from Astrium, Toulouse, France. Solutions are derived involving coupled equations of motion 
for vehicle orbital mechanics, rigid body spacecraft bus, and flexible-appendages dynamics. Nu- 
merical simulations were performed of a “flying model” of the spacecraft in the perigee phase 
of its elliptical Mars orbit, with all MARSIS booms fully deployed and Reaction Wheels used 
to both disturb and control the spacecraft attitude. The spacwraft’s Reaction Wheel model 
and Attitude Controller were designed by the authors and is not optimized nor based on any 
specific information provided by Astrium. Realistic excitations of the bus and boom appendages 
were imposed by short reaction wheel torque-time profiles that were constructed to maximize 
excitation of the system fundamental vibration mode. To clearly identify only the MARSIS 
interaction with the bus, the solar panels were modeled as rigid elements, and the attitude sen- 
sors and reaction wheels were assumed to be free from noise and other errors. The simulation 
results verify the Antenna system modeling fidelity and provide data on proximate “worst case” 
dynamic interactions between the flexible booms and the spacecraft bus that demonstrate the 
MARSIS dynamic compatibility with the spacecraft. 

1 INTRODUCTION 
This paper provides an independent modeling and dynamic analysis ’of the MARSIS Antenna seg- 
mented booms deployed on the Mars Express Spacecraft. This work was done on behalf of the 
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JPL MARSIS Experiment Project Office to establish the highest confidence for the Antenna System 
in-flight dynamics compatibility with the Mars Express mission ([l], [2], [4]). 

The Mars Express Mission is a joint NASA/ESA Cooperative project. The Mars Express Space- 
craft being built by ESA will study Mars for about four years from a highly elliptical orbit (15,000 
km apoapsis and 250 km periapsis altitude) with seven major science instruments on the spacecraft 
plus a small lander vehicle, named Beagle 2. The mission will be launched about June 2003 and ar- 
rive at Mars in December 2003. The Mars Advanced Radar for Subsurface and Ionospheric Mapping 
(MARSIS), provided by NASA and managed by JPL, is a key instrument in the search for water 
on Mars. It is a four frequency band Synthetic Aperture Altimeter with penetration capability for 
subsurface and atmospheric sounding from 40 meter long dipole antennas oriented parallel to the 
planet surface and a 7 meter long monopole along the nadir for clutter cancellation. 

Our objective was to determine the antenna’s dynamic interaction with the spacecraft bus (or 
central rigid body). Static and modal analyses make use of boom material parameters, mass proper- 
ties, and laboratory test results provided by TRW, in addition to Astrium data on spacecraft mass 
properties and orbital parameters. Solutions are derived involving coupled equations of motion for 
vehicle orbital mechanics, rigid body spacecraft bus, and flexible-appendages dynamics. Numerical 
simulations were performed of a “flying model” of the spacecraft in the perigee phase of its elliptical 
Mars orbit, with d MARSIS booms fully deployed and Reaction Wheels used to both disturb and 
control the spacecraft attitude. The spacecraft’s Reaction Wheel model and Attitude Controller 
were designed by the authors and is not optimized nor based on any specific information provided 
by Astrium. Realistic excitations of the bus and boom appendages were imposed by short reaction 
wheel torque-time profles that were constructed to maximize excitation of the system fundamental 
vibration mode. To clearly identify only the MARSIS interaction with the bus, the solar panels were 
modeled as rigid elements, and the attitude sensors and reaction wheels were assumed to be free 
from noise and other errors. The simulation results verify the Antenna system modeling fidelity and 
provide data on proximate “worst case” dynamic interactions between the flexible booms and the 
spacecraft. bus that demonstrate the MARSIS dynamic compatibility with the spacecraft. 

1.1 Approach to the Dynamic Analysis and Modeling 

Clearly, the MARSIS uniquely segmented booms present a dynamic modeling challenge and a special 
problem in predicting the on-orbit deployed dynamic behavior. For the Mars Express mission, 
where a precise attitude pointing stability prediction is required, the solution needs to include 
the segmented dipole and monopole antennas flexible boom appendages, the attachment boundary 
conditions, and the rigid body inertial dynamics of the spacecraft in its Martian elliptical orbit with 
orbital mechanics, gravity gradient torques, and closed-loop reaction wheel control. The following 
modeling, analysis, and simulations were performed with this approach. 

From Figures 1 and 2 we observe that, in the deployed state, the appendage model is far from 
being a uniform, homogeneous beam. Rather, it consists of 13 segments hinged together by some 
kinematic constraints. This motivates the multi-body analysis to be discussed next. 

1.2 Assumptions of the Dynamic Model 
A dynamic model of the deployed dipole and monopole booms was derived with the following as- 
sumptions: 

0 Only a small portion of the orbit is simulated, i.e., 100 seconds representing the spacecraft’s 
periapsis passage in its elliptical Mars orbit. 

2 



The spacecraft bus is modeled as a rigid body with three Reaction Wheels aligned along the 
principal axes. 

The spacecraft Attitude Control System is deliberately modeled with perfect position and 
rate reference sensors. Reaction Wheels are modeled with realistic rotor inertia, momentum 
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0 

0 

1.3 

storage, and torque capabilities. 

The solar panels are deliberately modeled as rigid fixed elements, and their inertia contribution 
is included in the monent of inertia matrix of the bw about its center of mass. This is done to 
avoid additional complications in the model, but primarily because the solar panels are much 
more stiff than the antennas. 

The vehicle dynamics is coupled to the orbital dynamics, but the spacecraft undergoes only 
small rotational motions of less than one degree. 

The monopole and dipole booms were first modeled as cantilever beams of uniform and homo- 
geneous material properties along their length. However, we were not able to come close 
to the experimental results provided by TRW. 

An improved equivalent model was derived assuming that each boom is modeled as a serial 
chain of hinged flexible beams, with rotational springs at the “root” (attachment point to the 
bus) and between the segments. 

The root spring constants are obtained from the TRW static deflection water tank (zero-g) 
tests 

The rotational spring constants between each hinged segment are kept as free parameters in 
order to match the first mode of the tested article. The hinges are modeled as perfect spherical 
joints. 

Boom-Bus Attachment Boundary Condition Influence 
Comparative information is presented below that shows the dynamic behavior that supports the 
conservatism of using fixed - free, or various degrees of fixity such as ”root” hinge stiffness, versus 

-the actual in-space condition of quasi free - free boundaries seen by the MARSIS booms. The term 
”quasi” is used to express that the spacecraft central body mass and rotational inertia wil l  impose 
force and moment constraints on the boom root interface. If the central body were massless then a 
true free - free boundmy condition would be present for the booms. 

The following approximate functional relationship from Ref. ([3]) provides an insight into Bound- 
ary Condition inhence on the natural frequencies (in [rad/s]) of homogeneous cantilever beams : 

where: j = 1, 2, 3, ....... n; ai = Non-rigid body mode coefficients (iteratively derived from transcen- 
dental hyperbolic equations for homogeneous cantilever beams); L = length of beam; E = modulus 
of elasticity; I = area moment of inertia of beam about neutral axis; m = mass per unit length of 
beam. 

Then, comparing the two extreme cantilever beam boundary conditions of Fixed-Free vs Free- 
Fkee, the first four mode CoefEcients, aj, are: 

3 



1 1.8751 11 4.7300 I 

One can readily see the ratio of the CZ? terms for two boundary conditions provides modal fre 
quency scaling, e.g., the first modes will have (4.73003‘ / (1.8751)2 = 6.364/ 1. Thus the pure free - 
free beam fundamental frequency will be 6.364 times higher than the k e d  - free beam fundamental 
frequency. 

While these facts provide a conservative direction for TRW’s results, they  do not allow ac- 
curate prediction of the actual in-flight dynamics of the segmented MARSIS booms. It is clear, 
however, that the bite stiffness of the ”root” hinge is not a fixed or clamped case, and tends 
towards a free-free case or higher frequency. Mitigating that are the segment “spliced-joints” which 
tend to lower the overall boom stiffness. Prediction of the resulting global dynamics of the booms 
requires much further modeling and analysis, and makes careful use of the TRW test results. 

- 

2 
3 
4 

1.4 Boom Stiffness Symmetry 
TRW conducted static load-deflection water tank (“zem-g) tests of the fully deployed 20-meter 
boom to determine the global bending transverse stifbess, the stiffness of the boom “root” in the 
two transverse directions, K,, and K,,, and also to obtain data on the stiffness of the “spliced” 
joints. The x direction is defmed as the roll axis (see Figure l), whereas the y and z axes are the 
yaw and pitch axes respectively. 

The “root” stiffness K,, was found to be 926.47 N-m/radian (or 8200 in-lb/rad), and K,, was 
206.76 N-m/radian (or 1830 in-lb/rad). Thus, the “root” section was 4.48 times stiffer in the K,, 
direction. This is not surprising since the slotting of the boom tube at the segment fold points 
creates an obvious asymmetry. 

The test data also indicated the stiffness of the typical “spliced” section was 2.6 times greater in 
the z direction then the y direction. This result is opposite to the ”root” stiffness asymmetry, and 
leads to the expectation that the combined segmented boom deflections due to “root and splices” 
will tend to cancel out local differences in directionality for the global boom behavior. 

These static deflection tests also indicated reasonable transverse symmetry for the global stiffness, 
that w a s  later conftrmed by the symmetric frequencies obtained from the TRW ten-meter Free- 
Fixed boom scaled impulse response dynamic tests. We have therefore taken this into account in 
this analysis and detailed modeling of the segments and joints, and assumed approximately the same 
global stiffness and natural frequencies in both transverse directions of the fully deployed booms. 

* 

, 
4.6941 7.8532 
7.8547 10.9956 
10.9955 14.1371 

2 EQUATIONS OF’ MOTION 
The equations of motion of the entire system will be derived in this section. An inertial reference 
fram FI is defined by the X-axis along the vernal equinox, the Z-axis along the direction of the 
system’s angular momentum, and the Y-axis completes the right-handed triad. The origin of FI is 
placed at the center of a Mars geocentric frame. The position and velocity of the center of w s  of 
bodies i and j (also representing nodes i and j of an extended finite element body) is given by vectors 
ri and rj, and i.i and fj respectively measured from the origin of FI. Similady, the attitude of the 
reference frames 3; and Fj of bodies i and j with respect to the inertial frame FI is described by 
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Figure 1: Finite element model of vehicle with deployed MARSIS antennas. 

Figure 2: Dipole Boom Deployment in Vacuo. 
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tensors Ai and Aj, and their angular velocity by vectors w; and w j ,  respectively. We parameterize 
the translation of body i by the components of vectors rj and ij in Fr, and its rotation wrt. 3 1  by 
the quaternion parameters qj and the angular velocity wi. It is also useful to introduce the orbiting 
reference frame FOW, which we use to describe the near field dynamics of the spacecraft relative 
to its orbit. This reference frame is attached to a point that follows a Keplerian orbit around the 
primary body. 3 0 ~  is dehed by the direction of the orbital velocity vector (x-axis), the local 
vertical (z-axis), and the orbit normal (y-axis). The orbit of the origin of 30- is dehed  by the 

six orbital elements a (semimajor axis), e (eccentricity), i (inclination), (longitude of ascending 
node), P (argument of perigee), v (true anomaly), and time of passage through perigee. The orbital 
radius is &, and the orbital angular velocity vector is denoted by $.The transformation between 
3 0 ~ ~  and 31 is given by 30- = W' with 

R =  0 -1 0 R ~ ( C Z + V ) R ~ ( ~ ) R ~ ( O ~ )  (2) [: : 
where R, (.) denotes a rotation matrix of (.) around the direction speciiied by the subscript. It is 
useful to refer the translational dynamics of body i to the origin of FORF. Therefore, we have 

ri = RO +pi  (3) 

We define the state vector as: 

Since we decide to work with the neax field dynamics, the translational and rotational kinematics 
equations become: 

vj = pj  (5) 

w j  = 2 ~ ( ~ ~ j 4  (6) 
where G (qi) denotes the transformation between angular velocities and rotation parameters. We 
have: 

fj =& + p j  +n x p; 

F j  = & +pi + s2 x n x pi+2n x pi 
(7) 
(8) 

We also use the notation 
0 -w3 w2 

-w2 w1 0 
(9) 

Measuring translational quantities with respect to Fom,the translational and rotational bus 
dynamics equations become: 

mipi = -mi& - mia x x pj-2mis2 x pj+mjRiii + f, (10) 
with 
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and 
(12) 

hi = -7, (13) 

ri 
JiGi + wi X (Jiwi + hz) = rcpzcm X fs- + T a  + T e  

ki I 

where mi and Ji are the mass and moment of inertia matrix of the i-th body, fs is the solar force 
acting on the i-th body, ps and p E  represent the solar and Earth gravitational parameters, h, 
represents the internal angular momentum distribution for the i-th body (originated by reaction 
wheels), rcPzcm represents the vector fiom center of mass to center of pressure of the i-th body, 
fa and ra represent actuator control forces and torques, and f, and T,  represent the generalized 
structural reaction forces and moments at the root of each appendage. The combined model of the 
bus plus appendages is based on eliminating these constraint reaction .forces and torques via finite 
element assembly. 

2.1 Disturbances and Actuator Model 
The disturbance models that we consider acting on the spacecraft bus are: gravity, solar pressure, 
and actuator forces and torques. These perturbations are already included in equation (11) and in 

equation (12). The i-th body is modeled as a rigid cylinder. 
Control inputs are reaction wheel forces and torques. For the reaction wheel dynamic model, we 

adopt a generic wheel model. Three reaction wheels are located and centered along the spacecraft 
principal axes. Each reaction wheel dynamics is as described in equation (13). 

3 CONSTRAINED FLEXIBLE BODY DYNAMICS 
Hamilton’s Principle states that, for any kinematically admissible variation of the displacement and 
rotation fields, i.e. allowed by the geometry of the motion, the following stationarity condition holds 
for a system S of nb bodies: 

where L (7, 6, t )  = I(7, 6) +U (7, t )  is the Lagrangean of S, I (7, 6) is the kinetic energy of S and 
U (7, t )  the potential energy of S, 7 and 6 are the vectors of generalized coordinates and speeds, u 
is the vector of generalized momenta, and F is the vector of generalizes forces. For simplicity, let us 
impose that 67 = 0 at the boundaries of the time interval. The vectors 7, 6, and f are defined as 
follows: 

7 = (ri, qi) (15) 

611 = (sri, 06i) (16) 

?j = (fi, W i )  (17) 
F = (fg + fi, ri) (18) 
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where f36i s t a d s  for a virtual variation of the quasicoordinate describing the rotation The vectors 
fi and ri include external perturbation and control forces, and fg represents the gravitational force 
-,umi+. Therefore Ai =Ai (4;). From eq. (14), we obtain kit 

The virtual displacements Sri and virtual rotations f36i in eq. (19) are kinematically admissible 
as they satisfy any constraint equation imposed on body i, namely if 

Qri . Sri + @ei .196i = 0 (20) 

(21) 

where Q = [ari, +ei] represents the Jacobian of a certain algebraic equation 

9 = 9 (q,+,t) = 0 

Therefore, there exists a vector of Lagrange multipliers X such that the new equations of motion 
become: 

86i. (J;G, + GiJiwi - ri - Q T i X )  = 0 (22) 
.Finally, for arbitrary admissible dr; and esi, we obtain the following equations of motion for body 
i: 

(23) 

(24) 
An alternative, more rigorous derivation invokes a generalized Lagrangem B (7, q,  t )  = L (q, q, t).+ 
@A. The set of equations for body i are eq.(23), eq. (24), and eq. (13). 

The equations of motion can now be written in matrix form as: 

M QT 
[ Q  o ] ( : ) = ( : )  

where 
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M =  J mjl3 0 
0 Jj 

0 

4 APPENDAGE EQUATIONS 
If the appendage was a continuous member (a cantilevered beam, for instance) the equations of 
motion for each appendage in global coordinates (subscript ,)can be written as follows: 

Mgq + K,q = f R  (30) 

where the vector q (of dimension n, x 1) contains the nodal displacements and rotations of each node 
in global coordinates, and f R  represents the vector of generalized external forces on the appendage 
nodes. 

In our analysis, we noticed that a better correlation with the experimental modal frequencies of 
each appendage (monopole and dipole booms) can be achieved if the appendage is modeled as a 
series of elastic Bernoulli-Euler beams connected serially to each other by spherical joints, each joint 
supporting a rotational spring (in each direction). Instead of the fixed boundary condition at the 
root, a spherical joint with the root hinge spring constants provided by the TRW report was used. 
The model of the appendage then becomes: 

Mt Gt + Ktqt = f t  (31) 

where the vector qt (of dimension nt x 1) contains the nodal displacements and rotations of each node 
in global coordinates, and ft represents the vector of generalized external forces on the appendage 
nodes. Here, nt is the total number of degrees of freedom of each elastic segment times the number 
of segments. The model is in block diagonal form as 

where Kij includes the effect of the rotational spring at the hinge and root. 
For an ideal spherical joint, the constraint Jacobian is 

9 
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5 COMPONENT MODEL REDUCTION 
In this section, we obtain an expression of the reduced set of multfiexible body dynamics equations. 

The algorithm makes use of the Singular Value Decomposition (SVD) to project the equations 
of motion of the constrained system into the tangent subspace of the motion (eliminates reaction 
forces and torques between pairs of interacting bodies). 

The equations of motion with the constraints may be written as 

~ i j  + K~ -I- +;A = G~ + Q (35) 

aq?j = 4t) 
*0,4 = y(t) 

By introducing a coordinate transformation P such that 

(36) 
(37) 

where 
(39) 

one obtains a projection of the dynamics of the constrained system in a direction tangent to the 
constraint manifold. The matrix P maps the minimal system state q, into the global system state 
q. This means that the projected system moves in the direction of the kinematically admissible 
displacements, and the effect of the constraints on the balance of forces vanishes. This transformation 
is equivalent to the one obtained via a singular value decomposition of the constraint jacobian, i.e.: 

[P, C, V ]  = svd (9:) (41) 

such that 
+,PI is invertible 

P;a; = 0 

(42) 

(43) 
Therefore, by premultiplying the equations of motion of each appendage by P2, we have a way 
to eliminate the reaction forces from the equations of motion. This elimination process is exact, 
however it requires some extra computation at each integration time since the algebraic operations 
required by the SVD may be time consuming. This is a marginal problem, since this computation is 
carried out off-line, before the dynamic simulation is carried out. Inserting eq.(38) into the equations 
of motion eq.(35), we obtain: 

where the enclosed term vanishes because of equation (43). 
The reduced model of the appendage then becomes: 

M,q, + K,q, = PZGu + PTQ = f, (45) 

where the vector q, (of dimension n, x 1) contains the reduced nodal displacements and rotations 
of each node in global coordinates, and f, represents the vector of generalized external forces on 
the appendage nodes. 
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6 COUPLING THE BUS EQUATIONS WITH THE AP- 
PENDAGE MULTIBODY EQUATIONS 

The wheel can be seen as a freely rotating body which is coupled to the base structure via a revolute 
joint. Assume that there exists a ~ t e  element model of the base structure. The wheel can be 
modeled with a localized inertia at a particular node, where the degree of freedom corresponding to 
the wheel rotation is left free. The equations of motion of the rigid spacecraft bus (superscript 1) 
and of node '1~, (locatio= of reactioc wheel) are as follows: 

M;,,d+S~,,w = fi (46) 
Si,,& + Jius+wLj + c h  + Gi('FI")w + w x (S,,,+,&) = ri - rz (47) 

J;LL+J$ = rz (48) 

where d is the nodal displacement, w is the nodal angular velocity, and 0 is the wheel rate vector, 
7," is the vector of reaction wheel actuation torque, fi is the vector of external forces at node i, 
and ri is the vector of external torques at node i. M L s  is the mass matrix of node i, Sks the f i s t  
moment of inertia matrix, J&s+w the second moment of inertia matrix, J," the diagonal matrix of 
wheel axial inertia, and Gi('FIH") is the skew-symmetric gyroscopic matrix, which depends on the 
relative angular momentum 'FI" present at node w. 
The equations of motion for the spacecraft in global coordinates (subscript ,)can be written as 
follows: 

M , q  + (Gg + D,)q  + K,q = u 

where the vector q (of dimension n, + 1 x 1) contains the nodal displacements and rotations of each 
node in global coordinates plus the reaction wheel rotation angles plus the degrees of freedom of 
the bus, and u is the vector of nodal external forces and moments (including external perturbations 
and control forces and moments) on the bus node, and the reaction wheel torques. Some nodes are 
artificially defined to be the optics nodes, and they do not have any mass or stiffness properties 
associated with them. Hence, the global equations need to be reduced from the global set ng to  a 
set of independent degrees of freedom ne. This is done by the transformation q = Tq,, where T is 
of dimension ng x ne. 
Splitting the equations in elastic (e) and rigid (r) coordinates, we have: 

where now Me, = F M g T ,  and SO on. With the assumptions stated above, Le., by assuming small 
angular rates (so that the nonlinear terms are negligible, and the modes are still the mass-normalized 
undamped modes), we can impose the modal transformation q, = #q, and rewrite the equations as: 

q + {4T[G(W")]# + 2A5)e + A2q + CPTMeTf2 = CPTTTbfr (51) 

Mre&j + MrrA = fr (52) 

where 4 is the modal matrix, A is the diagonal matrix of natural frequencies, and 5 is the modal 
damping coefficient. We assume some percentage of modal damping in the computations. Clearly, 
Mr, = JZ, MTe = MerT is the coupling inertia term, and f, is the vector of the wheel disturbance 
forces and torques on the bus, plus the reaction wheel actuation torques. 
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Introducing the state vector as x = (7, p, e, s2)T, where /3 represents the reaction wheel angle, the 
state space model becomes as follows: 

X = h + B u  

y = C x f D u  
(53) 
(54) 

where u is the vector of inputs (reaction wheel torque at location w), and is the observation matrix 
which reads a.U the h i t e  element state vector. The state matrices are as follows: 

‘ I  0 
-M-lK -M-l(G + 0) 

A =  [ 

K = [  K: :] 

B =  [ -4TPi] 
0 13z3 

b =  [ 0 13x3 -13x3 ] 

0 O 1  

(55) 

7 EIGENSPECTRUM 
The eigenspectrum of the whole vehicle, including the rigid rotors is shown in Figure 3, while the 
eigenspectrum of the dipole and monopole booms is shown in Figure 4 and Figure 5,  respectively. 
The comparison with the experimental data reported in the JPL Memorandum (Ref. [2]) is excellent. 

8 CONTROL LAWS 
The control laws applied to the spacecraft are of the feedback (proportional-derivative) plus feed- 
forward type. The translation control actually implemented on the spacecraft is of the form 

f = K p ( S C m d  - SEst) + K,(Scmd - ;Es t )  f M i b d  (62) 

where s represents the position vector of the center of mass, Kp and K,, are translation control gain 
matrices, is the spacecraft mass matrix, qEst and qCmd represent the estimated and commanded 
translation state, respectively. The rotational control instead is of the following form 

7 = rp(A@em-) + r v ( W c m d  - O E ~ ~ )  + JLGcmd (63) 
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Figure 3: Frequencies of MARSIS vehicle dynamics. 
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Figure 4: Frequencies of Dipole Boom. 
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Figure 5: Frequencies of Monopole Boom. 
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where r, and rV are rotational control gain matrices, J is the spacecraft moment of inertia matrix, 
X is the eigenaxis of rotation, and e,,, is the magnitude of rotation corresponding to the difference 
between the commanded and the estimated quaternions. 

As per equation (13), the torques in equation (63) are applied with negative sign to the reaction 
wheels. The control gains were chosen as follows: 

0 direction 11 proportional gain ["/rad] 
ll roll II 1.7028e2 

derivative gain [Nms/rad] 1 
3.9582e+2 II 

[ 
I 

On account of the closed reaction wheel loops, the eigenstructure for a model with 4 modes 
becomes as follows: 

Yaw I 1.7028e2 3.9582ef2 
Ditch I 4.7300el 1.0995e2 

- mode open loop pole [Hzl] closed loop pole [Hz] 
1 0 0 
2 0 0 

4 0 0 
5 0 0 
6 0 0 

J 3  0 0 

U 

J 7  
1 8  

I L 

0 5.9197e-2 1 
0 8.356062 7 

J I L 

9 0 8.3605e-2 
10 8.356062 9.2141e-2 
11 8.3605e-2 9.227762 
12 9.2141e-2 1.4400e+0 n 

9 NUMERJCAL SIMULATION 

A numerical simulation has been carried out to show the performance of the model. The spacecraft 
bus is given an excitation by a reaction wheel torque pulse of 0.33" for a duration of 6 second about 
the bus Z-axis (pitch). Axes X (roll) and Y (yaw) are not actuated. A closed loop proportional- 
derivative controller from spacecraft angles and angular rates to spacecraft body torques is applied 
to maintain the monopole antenna and Y axis always pointed along the Nadir direction (local Mars 
vertical). Figure 10 depicts the torque profle applied to the pitch axis, designed to excite the 0.083 
Hz mode. Figures 11, 12, and 13 depict the open loop response of the system (roll, yaw, and pitch 
angle) to the torque input with 2% damping. Figure 14 shows the effect of 2% and 5% damping on 
the yaw rate. Figures 15, 17, 19, and Figures 16, 18, 20, show the roll, yaw, and pitch angles of the 
bus with 5% and, respectively, 2% structural damping is applied to the monopole and dipole booms. 
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Figure 6: Bode plots of transfer functions from pitch reaction wheel input to X, Y, Z bus center of 
mass displacements. 
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Figure 7 Bode plots of transfer functions from pitch reaction wheel input torque to bus roll, yaw, 
and pitch angles. 
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Figure 8: Bode plots of transfer functions from pitch reaction wheel input to X, Y, Z bus center of 
mass velocities. 
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Figure 9: Bode plots of transfer functions from pitch reaction wheel input torque to bus roll, yaw, 
and pitch rate. 
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Figure 10: Applied pitch reaction wheel torque vs. time. 
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A significant increase in residual oscillations results when a lower level of damping is present, as it 
is to be expected. Finally, Figure 21 shows the pitch axis reaction wheel speed during the transient 
maneuver, in which approximately 475 rpm are reached (the spin inertia of each wheel is 0.2 kgm2), 
for a change in angular momentum of 1.66 "S. The maximum momentum storage capability of 
each reaction wheel is 10 "S. 

With the Reaction Wheel control loops closed, the disturbed response of the spacecraft bus to a 
Pitch axis symmetric torque pulse waveform of +/-2 Nms (+/-0.33 Nm for 6 seconds) was settled 
within 10 seconds following the end of the symmetric input disturbance. This disturbance torque 
profile was deliberately designed to excite the 20 m boom fundamental mode of 0.0835 Hz (measured 
with the attitude loops open) and also have a net zero momentum transfer to the bus and zero steady 
state rate. The residual settling oscillations after 10 seconds had amplitudes of sub-arcseconds with 
a frequency of 0.125 Hz. The residual oscillations had damping decrements of 40 seconds for 50% 
peak amplitude decay with the 5% structural damping factor, and 55 seconds witB the 2% damping 
factor. The peak bus motion for both dampings was +/- 0.2 degrees in pitch motion. Apparently, 
the Reaction Wheel closed loop damping of the disturbed bus was far more effective in controlling 
its settling motion than the structural damping. This is as it should be for such low frequency 
appendage dynamics. 

10 CONCLUSIONS . 

As predicted from boundary condition theory for cantilevered beams, the resulting open-loop oscil- 
latory dynamics of the spacecraft central body are significantly ("12%) higher in kequency (0.0835 
Hz) then the individual 20-meter boom modal dynamics of 0.0746 Hz. Two levels (2% and 5%) 
of boom structural damping were used in the simulations. Following the imposed disturbance, the 
open-loop settling time with 2% damping to a peak-peak oscillation of "0.002 degrees was -77 sec- 
onds. Importantly, with the attitude control system (ACS) Reaction Wheels in a closed-loop mode, 
the corresponding settling time to sub-arcsecond stability in the local-vertical local-horizontal Mars 
centered frame was very short ("10 seconds). With the system in a closed-loop mode, the effective 
inertial stiffness was increased and the bus settling oscillation frequency was about 50% higher at 
0.125 Hz compared to the open-loop condition. From this analysis we can conclude that the MARSIS 
booms have open-loop dynamic properties compatible with the Mars Express Spacecraft. Further- 
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Figure 11: Roll angle vs. time with no feedback (2% damping). 

0 . . . .  

-t \ / 

Figure 12: Yaw angle vs. time with no feedback (2% damping). 
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Figure 13: Pitch angle vs. time with no feedback (2% damping). 

Figure 1 4  Yaw rate vs. time with no feedback. 
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Figure 15: Roll angle with 5% damping and feedback. 

Figure 16: Roll angle with 2% damping and feedback. 
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Figure 17: Yaw angle with 5% damping and feedback. 

Figure 18: Yaw angle with 2% damping and feedback. 
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Figure 19: Pitch angle with 5% damping and feedback. 

Figure 20: Pitch angle with 2% damping and feedback. 
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Figure 21: Pitch Reaction Wheel speed in rpm during maneuver with feedback. 

more, we can predict that a realistically sized Reaction Wheel Controller will be able to suppress the 
antenna residual transient vibration dynamics so that it contributes negligible error to the mission 
science pointing accuracy and jitter (he-of-sight stability) capabilities. 
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